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Plasma Amplification can allow pulse compressors to
access the energy in many beams at NIF or other lasers

Concept for producing high energy short pulse at NIF

NIF pump
beams
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beam V//

Depletion of a 1 ns pump beam by a ps seed will require 15 cm of plasma for interaction

-> to avoid absorption the plasma must be hot and low density (high kL)
-> strong linear damping of Langmuir waves at high kL requires high intensity

An attractive concept is a single collimated high intensity pump/heater of ns duration that
Is well collimated and intense through out the interaction region. This will naturally
Create a uniform density plasma in a gas that is heated to high temperature.

Such a pump can be produced via ion wave amplification/combination in a second plasme



Low absorption, and moderate density leads to strong
damping in the Raman amplifier requiring high pump intensity
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Limiting absorption and avoiding wave breaking push the Raman amplifier to
high kL, plasmas where significant pump intensity is need to drive waves.

The conditions identified for 1 micron beams were studied at Jupiter in ‘09 where
1) 77x amplification of a weak seed was demonstrated [1,2].
2) Wave saturation effects were found to be describe by 2D VPIC [2,3].
Further development of the Raman amplifier section is TBD [4].

NIF-0000-0000052.ppt [1] Ping PoP (2009), [2] Kirkwood, 4 P20103.3l.vin PRL (2012) [4] Trines PRL 2012



The physics needed to combine ns pump beams
by SBS has been demonstrated by the ignition program

The beam propagation in the beam crossing region of the ignition target demonstrates
beam amplification.
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lon wave amplification is already used to control
the symmetry of the ignition target implosion
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This ‘wavelength tuning’ is

now the primary means of
controlling drive symmetry in the
ignition targets and has been
necessary for demonstrating
good implosion symmetry.

To bring the measured symmetry into
agreement with models a saturation

of the ion wave amplitude ~dn/n=4.4¢ -4
has been invoked, and new models developed.

Saturation can have an effect on power transfer!
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Nova: amplification of a single beam in a gas

target plasma is controlled by its wavelength
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A gas-filled bag created a uniform 2.6 mm
diameter plasma with conditions allowing
a 2.8 x amplification of a seed beam
that transferred 1 kJ (40%) of the pump
beams energy at Nova.

The amplification was controlled by the seed
Wavelength.

The amplified beam had the same (or better)
collimation than the incident beam.
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Omega experiments in 2002-5 showed
saturation that motivated present NIF models
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Omega experiments use same frequency pump and seed beams with Mach = +1
flow in plasma to match resonance on one side of a CH or Al exploding foil.

Observed amplification was as much as 4x when the probe beam intensity was weak.

Amplification was observed to reduce with probe intensity, also indicating saturation.
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Jupiter Experiments have also shown good focal quality
is maintained in the absence of pump filamentation
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Experiments at Jupiter have also shown that when the average intensity of a phase
plate smoothed pump beam is below 4% of the filamentation threshold intensity, the
angular structure of the incident beam, and its focal quality is best preserved.

-> We will keep pumps below this limit in the beam combiner to maximize focal quality.
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A NIF target is designed to maximize energy transfer to a
single beam with the properties needed for a pump

« To maximize single beam energy we:

— have designed a target to initially produce plasma conditions
similar to the beam crossing region of the ignition target but with Iy
longer interaction length (to reduce the effect of saturation) and
minimal absorption or defocusing of the beam.

— Have maximized energy transferred to a single high quality beam

by separately shifting its frequency from that of the other crossing
pump beams.

— Will verify the energy and focal quality of the amplified beam by
bringing it to focus on a witness foil during and initial test.

« Atarget that efficiently combines six NIF quads into a single 3-4 x
amplified beam will enable designs of a 2"d stage Raman amplifier.

« Benchmarking models of power transfer and its saturation will provide
confidence in future designs with still larger energies and larger
numbers of combined beams.

7/14/13



The current 3-color tuning set-up at NIF can bring 5

pumps to resonance to amplify one beam in a uniform plasma

5 Pumps quads in a small angle
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NIF has this tuning capability
10 additional quads at large angle will pre-heat the gas filled target

== With a uniform plasma 6 quads can be combined into a single beam!



Hydra simulations with optimized pointing show
the needed plasma conditions are formed by 1.0 ns

Hydra shows additional

absorption in wings of profile Electron density is 2.5 % crit
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Hydra simulations with optimized pointing show
the conditions are maintained to 2.0 ns

Hydra shows additional
absorption in wings of profile
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Pump beam absorption is less than 24% at 2.0 ns

Hydra shows additional

~<14% absorption in wings of profile

L o
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Flows are also minimal up to 2.0 ns allowing
pumps to be resonant over the whole volume

Electron density is 2.5 % crit
And uniform

Radial
flow

lon wave aligned flow
Velocities are < 3
cm/microsecond

(< 0.08 M) throughout
Interaction volume
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Adding a fraction of H to He will produce
ion wave damping rates of 0.1 to 0.2 in a cryo target

Hydra contours for . A.\W. frequency
[E.A. Wllllams et aI 1995]
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Combiner target conditions:
Im(w,,,,)/Re(w,,,) ~0.1510 0.3

Ignition studies indicate with 33% partial pressure of H, in He gas the ion wave
damping rate should be >10% of the ion wave frequency, so that the entire beam
crossing volume can be within the resonance width.

Target can also be tested at room temperature with C;H,, gas (with greater absorption).
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Project Name: Beam Combination Demonstration
Diagnostic Configuration

Diagnostics required: 90-110 FFLEX
GX D 18-124 SXI
o0 || |l \| /oo
DANTE-2 Y
(64,350)
/I o FFLEX ’
/(9’0, 110) 64-350 DANTE2

161-326 SXI

FABS & NBI
Q31B
DIM(90-315) GXD
- 143-274 DANTE1
FABS/NBI Diagnostic Location Pri. Type | Calib
Q3 lB/ ‘i GXD DIM 90-315 1 & Pre-shot
B E
o | DANTE-1 143, 274 1 3 | Pre-shot
DANTE-1 SXI-1 GXD DIM 0,0 1 3 | Pre-shot
(143,274) (161,326)
. FFLEX 90, 110 2 3 Pre-shot
Target viewed from (92,306)
FABS/NBI Q31B 1 3 Pre-shot
Experimental set-up: One for each unique illumination AND
diag config, e.g. if you change either, requires a different setup SXI[L,U] (1,2) 161,326 2 3 Pre-shot
Priority: (1: must have,2:like to have , 3: ride-along) Type: 18 124
(1:New diag, 2:major mod, 3: minor mod or existing) ’
DANTE-2 64, 350 2 3 Pre-shot
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A GXD at the top of the chamber will image
focal spot brightness and quality vs. time

Thin disk allows GXD

/ imaging of amplified
beam spot from
back side.

Thick disk blocks
pump beams for —
Dante and GXD



The NIF SXI and a GXD in a standard location (90/315)
will image pump beam brightness and time history

GXD sees all pump

’ Spots (albeit at a steep SXI gets clear view
angle) and will measure of 4 pump spots from
/ pump depletion vs. time bottom
AND beam. l,

L=y

Shots with a different
wavelength on the 30°
(seed) beam will
optimize power transfer
resonance.

Imaging pump beam
transmission will
demonstrate depletion
and allow beam to

beam variation to be
studied
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Conclusions

A 5 quad SBS combiner has been designed to produce ~ 40 kJ
of energy in a single NIF beam and can provide a high energy,
collimated ns duration beam attractive for driving a ~< ps pulse
Raman amplifier in a second stage.

The physics and conditions of the beam combiner are very
similar to the ignition target which produces up to 2x beam
amplification regularly and reproducibly.

Successful demonstration of a single beam combiner at NIF
will increase the confidence in the design of multi — 100 kJ
plasma amplifiers/compressors for large laser facilities.






